Διαδικασία
Η ακολουθία Fibonacci παράγεται από τη σχέση f(1) = f(2) = 1 , f(n+1) = f(n) + f(n-1), και απαντάται συχνά σε πολλούς τομείς των μαθηματικών και των άλλων επιστημών. Είναι όμως σημαντικό και το πόσο συχνά συναντάται στη φύση, σε μοτίβα όπως τα λουλούδια ή τα φύλλα των φυτών.
Επιπλέον, ο λόγος δύο διαδοχικών αριθμών της ακολουθίας τείνει προς την αποκαλούμενη Χρυσή Τομή, ή Χρυσή αναλογία, ή Αριθμό φ =1.618033989. Ο αντίστροφος της Χρυσής Τομής 1/φ= 0.618033989, με αποτέλεσμα να ισχύει: 1/φ=φ-1.
Ένα ορθογώνιο τετράπλευρο του οποίου ο λόγος των πλευρών είναι ίσος με 1/φ ονομάζεται Χρυσό Ορθογώνιο.