Διαδικασία
Σύμφωνα με το Πυθαγόρειο Θεώρημα, που εξ ονόματος αποδίδεται στον αρχαίο Έλληνα φιλόσοφο Πυθαγόρα: «ἐν τοῖς ὀρθογωνίοις τριγώνοις τὸ ἀπὸ τῆς τὴν ὀρθὴν γωνίαν ὑποτεινούσης πλευρᾶς τετράγωνον ἴσον ἐστὶ τοῖς ἀπὸ τῶν τὴν ὀρθὴν γωνίαν περιεχουσῶν πλευρῶν τετραγώνοις.». Δηλαδή: «το τετράγωνο της υποτινούσης (της πλευράς που βρίσκεται απέναντι από την ορθή γωνία) ενός ορθογώνιου τριγώνου ισούται με το άθροισμα των τετραγώνων των δύο καθέτων πλευρών».
Το θεώρημα μπορεί να γραφεί ως εξίσωση συσχετίζοντας τα μήκη των πλευρών α,β και γ, που ονομάζεται πυθαγόρεια εξίσωση:
(όπου β και γ τα μήκη των δύο κάθετων πλευρών και α το μήκος της υποτείνουσας)
Η παραπάνω αρχαία διατύπωση της πρότασης του εν λόγω θεωρήματος παρέχει ο Ευκλείδης στο πρώτο βιβλίο των Στοιχείων Γεωμετρίας του (47η πρόταση) με σχετική απόδειξη που κατά παράδοση οφείλεται στον Πυθαγόρα, ο οποίος κατ’ άλλη, επίσης αρχαία, παράδοση, μετά την ανακάλυψή του αυτή θυσίασε προς τους θεούς εκατόμβη, γι’ αυτό και το θεώρημα αυτό ονομάσθηκε «Εκατόμβη» ή «Θεώρημα εκατόμβης».